284 research outputs found

    Limb Differences in Unipedal Balance Performance in Young Male Soccer Players with Different Ages

    Get PDF
    In soccer, the dominant leg is frequently used for passing and kicking while standing on the non-dominant leg. Consequently, postural control in the standing leg might be superior compared to the kicking leg and is further enhanced with increasing age (i.e., level of playing experience). Unfortunately, leg differences in postural control are associated with an increased risk of injuries. Thus, we examined differences between limbs in unipedal balance performance in young soccer players at different ages. Performance in the Lower Quarter Y Balance Test (YBT-LQ) of the dominant and non-dominant leg and anthropometry was assessed in 76 young male soccer players (under-13 years [U13]: n = 19, U15: n = 14, U17: n = 21, U19: n = 22). Maximal reach distances (% leg length) and the composite scores were used for further analyses. Statistical analyses yielded no statistically significant main effects of leg or significant Leg × Age interactions, irrespective of the measure investigated. However, limb differences in the anterior reach direction were above the proposed cut-off value of >4 cm, which is indicative of increased injury risk. Further, statistically significant main effects of age were found for all investigated parameters, indicating larger reach distances in older (U19) compared to younger (U13) players (except for U15 players). Although reach differences between legs were non-significant, the value in the anterior reach direction was higher than the cut-off value of >4 cm in all age groups. This is indicative of an increased injury risk, and thus injury prevention programs should be part of the training of young soccer players

    Hadron structure at small momentum transfer

    Full text link
    Giving three examples, the form factors of the nucleon, the polarisability of the charged pion and the interference of the S11(1535)S_{11}(1535) with the D13(1520)D_{13}(1520) excitation of the nucleon in the ηp\eta p-decay channel, it is argued that the hadron structure at low momentum transfer is highly significant for studying QCD.Comment: 7 pages, 9 figures. Contribution to the International School of Nuclear Physics, 29th Ccourse, "Quarks in Hadrons and Nuclei", Erice, Sicily, 16 - 24 September 200

    Effect of Arm Movement and Task Difficulty on Balance Performance in Children, Adolescents, and Young Adults

    Get PDF
    BACKGROUND: Studies have shown that restricted compared to free arm movement negatively affects balance performance during balance assessment and this is reinforced when the level of task difficulty (e.g., varying stance/walk conditions, sensory manipulations) is increased. However, it remains unclear whether these findings apply to individuals with differences in the development of the postural control system. Thus, we examined the influence of arm movement and task difficulty on balance performance in children, adolescents, and young adults. METHODS: Static, dynamic, and proactive balance performance were assessed in 40 children (11.5 ± 0.6 years), 30 adolescents (14.0 ± 1.1 years), and 41 young adults (24.7 ± 3.0 years) using the same standardized balance tests [i.e., one-legged stance (OLS) time with eyes opened/closed and/or on firm/foam ground, 3-m beam (width: 6, 4.5, or 3 cm) walking backward step number, Lower Quarter Y-Balance test (YBT-LQ) reach distance] with various difficulty levels under free vs. restricted arm movement conditions. RESULTS: In all but one test, balance performance was significantly better during free compared to restricted arm movement. Arm by age interactions were only observed for the YBT-LQ and post hoc analyses revealed significantly greater performance differences between free and restricted arm movement, especially, in young adults. Arm by age by task difficulty interactions were found for the OLS and the 3-m beam walking backward test. Post hoc analyses showed significantly greater performance differences between free and restricted arm movement during high vs. low levels of task difficulty and this was more pronounced in children and adolescents. CONCLUSIONS: Regardless of age, static, dynamic, and proactive balance performance benefited from arm movements and this was especially noted for youth performing difficult balance tasks

    Instrumental variable estimation in semi-parametric additive hazards models

    Get PDF
    Instrumental variable methods allow unbiased estimation in the presence of unmeasured confounders when an appropriate instrumental variable is available. Two-stage least-squares and residual inclusion methods have recently been adapted to additive hazard models for censored survival data. The semi-parametric additive hazard model which can include time-independent and time-dependent covariate effects is particularly suited for the two-stage residual inclusion method, since it allows direct estimation of time-independent covariate effects without restricting the effect of the residual on the hazard. In this article we prove asymptotic normality of two-stage residual inclusion estimators of regression coefficients in a semi-parametric additive hazard model with time-independent and time-dependent covariate effects. We consider the cases of continuous and binary exposure. Estimation of the conditional survival function given observed covariates is discussed and a resampling scheme is proposed to obtain simultaneous confidence bands. The new methods are compared to existing ones in a simulation study and are applied to a real data set. The proposed methods perform favourably especially in cases with exposure-dependent censoring

    Chemical imaging of mixed metal oxide catalysts for propylene oxidation: from model binary systems to complex multicomponent systems

    Get PDF
    Industrially-applied mixed metal oxide catalysts often possess an ensemble of structural components with complementary functions. Characterisation of these hierarchical systems is challenging, particularly moving from binary to quaternary systems. Here a quaternary Bi−Mo−Co−Fe oxide catalyst showing significantly greater activity than binary Bi−Mo oxides for selective propylene oxidation to acrolein was studied with chemical imaging techniques from the microscale to nanoscale. Conventional techniques like XRD and Raman spectroscopy could only distinguish a small number of components. Spatially-resolved characterisation provided a clearer picture of metal oxide phase composition, starting from elemental distribution by SEM-EDX and spatially-resolved mapping of metal oxide components by 2D Raman spectroscopy. This was extended to 3D using multiscale hard X-ray tomography with fluorescence, phase, and diffraction contrast. The identification and co-localisation of phases in 2D and 3D can assist in rationalising catalytic performance during propylene oxidation, based on studies of model, binary, or ternary catalyst systems in literature. This approach is generally applicable and attractive for characterisation of complex mixed metal oxide systems. © 2021 The Authors. ChemCatChem published by Wiley-VCH Gmb

    Experimentelle Methoden in der Informatik

    Get PDF
    Dieser Report enthaelt die Ausarbeitungen von Vortraegen aus einem Seminar gleichen Namens, das am 3./4. Juli 1995 am Institut f"ur Programmstrukturen und Datenorganisation unter Leitung von Walter Tichy, Ernst Heinz, Paul Lukowicz und Lutz Prechelt stattfand. Die Artikel geben einen Ueberblick ueber die moegliche Funktion und den Stellenwert experimentellen Vorgehens in verschiedenen Teilen der Informatik, sowie einerseits deren wissenschaftstheoretische Grundlage und andererseits ihre bisherige praktische Umsetzung

    Determination of pi-N scattering lengths from pionic hydrogen and pionic deuterium data

    Get PDF
    The pi-N s-wave scattering lengths have been inferred from a joint analysis of the pionic hydrogen and the pionic deuterium x-ray data using a non-relativistic approach in which the pi-N interaction is simulated by a short-ranged potential. The pi-d scattering length has been calculated exactly by solving the Faddeev equations and also by using a static approximation. It has been shown that the same very accurate static formula for pi-d scattering length can be derived (i) from a set of boundary conditions; (ii) by a reduction of Faddeev equations; and (iii) through a summation of Feynman diagrams. By imposing the requirement that the pi-d scattering length, resulting from Faddeev-type calculation, be in agreement with pionic deuterium data, we obtain bounds on the pi-N scattering lengths. The dominant source of uncertainty on the deduced values of the pi-N scattering lengths are the experimental errors in the pionic hydrogen data.Comment: RevTeX, 20 pages,4 PostScript figure
    • 

    corecore